Publications

2019

Ortinau, Cynthia, Caitlin Rollins, Ali Gholipour, Hyuk Jin Yun, Mackenzie Marshall, Borjan Gagoski, Onur Afacan, et al. 2019. “Early-Emerging Sulcal Patterns Are Atypical in Fetuses With Congenital Heart Disease”. Cereb Cortex 29 (8): 3605-16. https://doi.org/10.1093/cercor/bhy235.
Fetuses with congenital heart disease (CHD) have third trimester alterations in cortical development on brain magnetic resonance imaging (MRI). However, the intersulcal relationships contributing to global sulcal pattern remain unknown. This study applied a novel method for examining the geometric and topological relationships between sulci to fetal brain MRIs from 21-30 gestational weeks in CHD fetuses (n = 19) and typically developing (TD) fetuses (n = 17). Sulcal pattern similarity index (SI) to template fetal brain MRIs was determined for the position, area, and depth for corresponding sulcal basins and intersulcal relationships for each subject. CHD fetuses demonstrated altered global sulcal patterns in the left hemisphere compared with TD fetuses (TD [SI, mean ± SD]: 0.822 ± 0.023, CHD: 0.795 ± 0.030, P = 0.002). These differences were present in the earliest emerging sulci and were driven by differences in the position of corresponding sulcal basins (TD: 0.897 ± 0.024, CHD: 0.878 ± 0.019, P = 0.006) and intersulcal relationships (TD: 0.876 ± 0.031, CHD: 0.857 ± 0.018, P = 0.033). No differences in cortical gyrification index, mean curvature, or surface area were present. These data suggest our methods may be more sensitive than traditional measures for evaluating cortical developmental alterations early in gestation.
Papadelis, Christos, Banu Ahtam, Henry Feldman, Michel Alhilani, Eleonora Tamilia, Donna Nimec, Brian Snyder, Ellen Grant, and Kiho Im. 2019. “Altered White Matter Connectivity Associated With Intergyral Brain Disorganization in Hemiplegic Cerebral Palsy”. Neuroscience 399: 146-60. https://doi.org/10.1016/j.neuroscience.2018.12.028.
Despite extensive literature showing damages in the sensorimotor projection fibers of children with hemiplegic cerebral palsy (HCP), little is known about how these damages affect the global brain network. In this study, we assess the relationship between the structural integrity of sensorimotor projection fibers and the integrity of intergyral association white matter connections in children with HCP. Diffusion tensor imaging was performed in 10 children with HCP and 16 typically developing children. We estimated the regional and global white-matter connectivity using a region-of-interest (ROI)-based approach and a whole-brain gyrus-based parcellation method. Using the ROI-based approach, we tracked the spinothalamic (STh), thalamocortical (ThC), corticospinal (CST), and sensorimotor U- (SMU) fibers. Using the whole-brain parcellation method, we tracked the short-, middle-, and long-range association fibers. We observed for the more affected hemisphere of children with HCP: (i) an increase in axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) for the STh and ThC fibers; (ii) a decrease in fractional anisotropy (FA) and an increase in MD and RD for the CST and SMU fibers; in (iii) a decrease in FA and an increase in AD, MD, and RD for the middle- and long-range association fibers; and (iv) an association between the integrity of sensorimotor projection and intergyral association fibers. Our findings indicate that altered structural integrity of the sensorimotor projection fibers disorganizes the intergyral association white matter connections among local and distant regions in children with HCP.
Chung, Ai Wern, Rebekah Mannix, Henry Feldman, Ellen Grant, and Kiho Im. 2019. “Longitudinal Structural Connectomic and Rich-Club Analysis in Adolescent MTBI Reveals Persistent, Distributed Brain Alterations Acutely through to One Year Post-Injury”. Sci Rep 9 (1): 18833. https://doi.org/10.1038/s41598-019-54950-0.
The diffuse nature of mild traumatic brain injury (mTBI) impacts brain white-matter pathways with potentially long-term consequences, even after initial symptoms have resolved. To understand post-mTBI recovery in adolescents, longitudinal studies are needed to determine the interplay between highly individualised recovery trajectories and ongoing development. To capture the distributed nature of mTBI and recovery, we employ connectomes to probe the brain's structural organisation. We present a diffusion MRI study on adolescent mTBI subjects scanned one day, two weeks and one year after injury with controls. Longitudinal global network changes over time suggests an altered and more 'diffuse' network topology post-injury (specifically lower transitivity and global efficiency). Stratifying the connectome by its back-bone, known as the 'rich-club', these network changes were driven by the 'peripheral' local subnetwork by way of increased network density, fractional anisotropy and decreased diffusivities. This increased structural integrity of the local subnetwork may be to compensate for an injured network, or it may be robust to mTBI and is exhibiting a normal developmental trend. The rich-club also revealed lower diffusivities over time with controls, potentially indicative of longer-term structural ramifications. Our results show evolving, diffuse alterations in adolescent mTBI connectomes beginning acutely and continuing to one year.
Yun, Hyuk Jin, Ai Wern Chung, Lana Vasung, Edward Yang, Tomo Tarui, Caitlin Rollins, Cynthia Ortinau, Ellen Grant, and Kiho Im. 2019. “Automatic Labeling of Cortical Sulci for the Human Fetal Brain Based on Spatio-Temporal Information of Gyrification”. Neuroimage 188: 473-82. https://doi.org/10.1016/j.neuroimage.2018.12.023.
Accurate parcellation and labeling of primary cortical sulci in the human fetal brain is useful for regional analysis of brain development. However, human fetal brains show large spatio-temporal changes in brain size, cortical folding patterns, and relative position/size of cortical regions, making accurate automatic sulcal labeling challenging. Here, we introduce a novel sulcal labeling method for the fetal brain using spatio-temporal gyrification information from multiple fetal templates. First, spatial probability maps of primary sulci are generated on the templates from 23 to 33 gestational weeks and registered to an individual brain. Second, temporal weights, which determine the level of contribution to the labeling for each template, are defined by similarity of gyrification between the individual and the template brains. We combine the weighted sulcal probability maps from the multiple templates and adopt sulcal basin-wise approach to assign sulcal labels to each basin. Our labeling method was applied to 25 fetuses (22.9-29.6 gestational weeks), and the labeling accuracy was compared to manually assigned sulcal labels using the Dice coefficient. Moreover, our multi-template basin-wise approach was compared to a single-template approach, which does not consider the temporal dynamics of gyrification, and a fully-vertex-wise approach. The mean accuracy of our approach was 0.958 across subjects, significantly higher than the accuracies of the other approaches. This novel approach shows highly accurate sulcal labeling and provides a reliable means to examine characteristics of cortical regions in the fetal brain.

2018

Smith, Richard, Connor Kenny, Vijay Ganesh, Ahram Jang, Rebeca Borges-Monroy, Jennifer Partlow, Sean Hill, et al. 2018. “Sodium Channel SCN3A (Na1.3) Regulation of Human Cerebral Cortical Folding and Oral Motor Development”. Neuron 99 (5): 905-913.e7. https://doi.org/10.1016/j.neuron.2018.07.052.
Channelopathies are disorders caused by abnormal ion channel function in differentiated excitable tissues. We discovered a unique neurodevelopmental channelopathy resulting from pathogenic variants in SCN3A, a gene encoding the voltage-gated sodium channel Na1.3. Pathogenic Na1.3 channels showed altered biophysical properties including increased persistent current. Remarkably, affected individuals showed disrupted folding (polymicrogyria) of the perisylvian cortex of the brain but did not typically exhibit epilepsy; they presented with prominent speech and oral motor dysfunction, implicating SCN3A in prenatal development of human cortical language areas. The development of this disorder parallels SCN3A expression, which we observed to be highest early in fetal cortical development in progenitor cells of the outer subventricular zone and cortical plate neurons and decreased postnatally, when SCN1A (Na1.1) expression increased. Disrupted cerebral cortical folding and neuronal migration were recapitulated in ferrets expressing the mutant channel, underscoring the unexpected role of SCN3A in progenitor cells and migrating neurons.
Tarui, Tomo, Neel Madan, Nabgha Farhat, Rie Kitano, Asye Ceren Tanritanir, George Graham, Borjan Gagoski, et al. 2018. “Disorganized Patterns of Sulcal Position in Fetal Brains With Agenesis of Corpus Callosum”. Cereb Cortex 28 (9): 3192-3203. https://doi.org/10.1093/cercor/bhx191.
Fetuses with isolated agenesis of the corpus callosum (ACC) are associated with a broad spectrum of neurodevelopmental disability that cannot be specifically predicted in prenatal neuroimaging. We hypothesized that ACC may be associated with aberrant cortical folding. In this study, we determined altered patterning of early primary sulci development in fetuses with isolated ACC using novel quantitative sulcal pattern analysis which measures deviations of regional sulcal features (position, depth, and area) and their intersulcal relationships in 7 fetuses with isolated ACC (27.1 ± 3.8 weeks of gestation, mean ± SD) and 17 typically developing (TD) fetuses (25.7 ± 2.0 weeks) from normal templates. Fetuses with ACC showed significant alterations in absolute sulcal positions and relative intersulcal positional relationship compared to TD fetuses, which were not detected by traditional gyrification index. Our results reveal altered sulcal positional development even in isolated ACC that is present as early as the second trimester and continues throughout the fetal period. It might originate from altered white matter connections and portend functional variances in later life.
Kim, Yeshin, Hyemin Jang, Seung Joo Kim, Soo Hyun Cho, Si Eun Kim, Sung Tae Kim, Hee Jin Kim, et al. (2018) 2018. “Vascular Effects on Depressive Symptoms in Cognitive Impairment”. J Alzheimers Dis 65 (2): 597-605. https://doi.org/10.3233/JAD-180394.
Late life depression is related to pathologic burdens, such as cerebral small vascular disease (CSVD) and amyloid, which are associated with brain network changes and cortical thinning. To examine the associations of various CSVD imaging markers, amyloid, and network changes with depression in cognitively impaired patients, we prospectively recruited 228 cognitively impaired patients having various degrees of amyloid and CSVD who underwent diffuse tensor image and PiB PET. Greater CSVD burden was associated with greater Geriatric Depression Scale (GDS) (white matter hyperintensities, WMH: p = 0.025, lacunes: p  0.001) but not with amyloid (p = 0.095), and cortical thinning (p = 0.630) was not associated with greater GDS. The changes in white matter networks were related to GDS with decreasing integration (global efficiency: p  0.001) and increasing segregation (clustering coefficient: p = 0.009). The network changes mediated the relationships of WMH and lacunes with GDS. Our findings provide insight to better understand how CSVD burdens contribute to depression in cognitively impaired patients having varying degrees of amyloid and vascular burdens.
Banerjee, Gargi, Hyemin Jang, Hee Jin Kim, Sung Tae Kim, Jae Seung Kim, Jae Hong Lee, Kiho Im, et al. (2018) 2018. “Total MRI Small Vessel Disease Burden Correlates With Cognitive Performance, Cortical Atrophy, and Network Measures in a Memory Clinic Population”. J Alzheimers Dis 63 (4): 1485-97. https://doi.org/10.3233/JAD-170943.
BACKGROUND: Recent evidence suggests that combining individual imaging markers of cerebral small vessel disease (SVD) may more accurately reflect its overall burden and better correlate with clinical measures. OBJECTIVE: We wished to establish the clinical relevance of the total SVD score in a memory clinic population by investigating the association with SVD score and cognitive performance, cortical atrophy, and structural network measures, after adjusting for amyloid-β burden. METHODS: We included 243 patients with amnestic mild cognitive impairment (MCI), Alzheimer's disease dementia, subcortical vascular MCI, or subcortical vascular dementia. All underwent MR and [11C] PiB-PET scanning and had standardized cognitive testing. Multiple linear regression was used to evaluate the relationships between SVD score and cognition, cortical thickness, and structural network measures. Path analyses were performed to evaluate whether network disruption mediates the effects of SVD score on cortical thickness and cognition. RESULTS: Total SVD score was associated with the performance of frontal (β - 4.31, SE 2.09, p = 0.040) and visuospatial (β - 0.95, SE 0.44, p = 0.032) tasks, and with reduced cortical thickness in widespread brain regions. Total SVD score was negatively correlated with nodal efficiency, as well as changes in brain network organization, with evidence of reduced integration and increasing segregation. Path analyses showed that the associations between SVD score and frontal and visuospatial scores were partially mediated by decreases in their corresponding nodal efficiency and cortical thickness. CONCLUSION: Total SVD burden has clinical relevance in a memory clinic population and correlates with cognition, and cortical atrophy, as well as structural network disruption.
Johnson, Matthew, Xingshen Sun, Andrew Kodani, Rebeca Borges-Monroy, Kelly Girskis, Steven Ryu, Peter Wang, et al. 2018. “Aspm Knockout Ferret Reveals an Evolutionary Mechanism Governing Cerebral Cortical Size”. Nature 556 (7701): 370-75. https://doi.org/10.1038/s41586-018-0035-0.
The human cerebral cortex is distinguished by its large size and abundant gyrification, or folding. However, the evolutionary mechanisms that drive cortical size and structure are unknown. Although genes that are essential for cortical developmental expansion have been identified from the genetics of human primary microcephaly (a disorder associated with reduced brain size and intellectual disability) , studies of these genes in mice, which have a smooth cortex that is one thousand times smaller than the cortex of humans, have provided limited insight. Mutations in abnormal spindle-like microcephaly-associated (ASPM), the most common recessive microcephaly gene, reduce cortical volume by at least 50% in humans, but have little effect on the brains of mice; this probably reflects evolutionarily divergent functions of ASPM. Here we used genome editing to create a germline knockout of Aspm in the ferret (Mustela putorius furo), a species with a larger, gyrified cortex and greater neural progenitor cell diversity than mice, and closer protein sequence homology to the human ASPM protein. Aspm knockout ferrets exhibit severe microcephaly (25-40% decreases in brain weight), reflecting reduced cortical surface area without significant change in cortical thickness, as has been found in human patients, suggesting that loss of 'cortical units' has occurred. The cortex of fetal Aspm knockout ferrets displays a very large premature displacement of ventricular radial glial cells to the outer subventricular zone, where many resemble outer radial glia, a subtype of neural progenitor cells that are essentially absent in mice and have been implicated in cerebral cortical expansion in primates. These data suggest an evolutionary mechanism by which ASPM regulates cortical expansion by controlling the affinity of ventricular radial glial cells for the ventricular surface, thus modulating the ratio of ventricular radial glial cells, the most undifferentiated cell type, to outer radial glia, a more differentiated progenitor.

2017

Im, Kiho, Guimaraes, Kim, Cottrill, Gagoski, Rollins, Ortinau, Yang, and Grant. (2017) 2017. “Quantitative Folding Pattern Analysis of Early Primary Sulci in Human Fetuses With Brain Abnormalities”. AJNR Am J Neuroradiol 38 (7): 1449-55. https://doi.org/10.3174/ajnr.A5217.
BACKGROUND AND PURPOSE: Aberrant gyral folding is a key feature in the diagnosis of many cerebral malformations. However, in fetal life, it is particularly challenging to confidently diagnose aberrant folding because of the rapid spatiotemporal changes of gyral development. Currently, there is no resource to measure how an individual fetal brain compares with normal spatiotemporal variations. In this study, we assessed the potential for automatic analysis of early sulcal patterns to detect individual fetal brains with cerebral abnormalities. MATERIALS AND METHODS: Triplane MR images were aligned to create a motion-corrected volume for each individual fetal brain, and cortical plate surfaces were extracted. Sulcal basins were automatically identified on the cortical plate surface and compared with a combined set generated from 9 normal fetal brain templates. Sulcal pattern similarities to the templates were quantified by using multivariate geometric features and intersulcal relationships for 14 normal fetal brains and 5 fetal brains that were proved to be abnormal on postnatal MR imaging. Results were compared with the gyrification index. RESULTS: Significantly reduced sulcal pattern similarities to normal templates were found in all abnormal individual fetuses compared with normal fetuses (mean similarity [normal, abnormal], left: 0.818, 0.752; < .001; right: 0.810, 0.753; < .01). Altered location and depth patterns of sulcal basins were the primary distinguishing features. The gyrification index was not significantly different between the normal and abnormal groups. CONCLUSIONS: Automated analysis of interrelated patterning of early primary sulci could outperform the traditional gyrification index and has the potential to quantitatively detect individual fetuses with emerging abnormal sulcal patterns.