Journal Papers

F

Wallace, Tess, Onur Afacan, Camilo Jaimes, Joanne Rispoli, Kristina Pelkola, Monet Dugan, Tobias Kober, and Simon Warfield. 2021. “Free Induction Decay Navigator Motion Metrics for Prediction of Diagnostic Image Quality in Pediatric MRI”. Magn Reson Med 85 (6): 3169-81. https://doi.org/10.1002/mrm.28649.
PURPOSE: To investigate the ability of free induction decay navigator (FIDnav)-based motion monitoring to predict diagnostic utility and reduce the time and cost associated with acquiring diagnostically useful images in a pediatric patient cohort. METHODS: A study was carried out in 102 pediatric patients (aged 0-18 years) at 3T using a 32-channel head coil array. Subjects were scanned with an FID-navigated MPRAGE sequence and images were graded by two radiologists using a five-point scale to evaluate the impact of motion artifacts on diagnostic image quality. The correlation between image quality and four integrated FIDnav motion metrics was investigated, as well as the sensitivity and specificity of each FIDnav-based metric to detect different levels of motion corruption in the images. Potential time and cost savings were also assessed by retrospectively applying an optimal detection threshold to FIDnav motion scores. RESULTS: A total of 12% of images were rated as non-diagnostic, while a further 12% had compromised diagnostic value due to motion artifacts. FID-navigated metrics exhibited a moderately strong correlation with image grade (Spearman's rho ≥ 0.56). Integrating the cross-correlation between FIDnav signal vectors achieved the highest sensitivity and specificity for detecting non-diagnostic images, yielding total time savings of 7% across all scans. This corresponded to a financial benefit of $2080 in this study. CONCLUSIONS: Our results indicate that integrated motion metrics from FIDnavs embedded in structural MRI are a useful predictor of diagnostic image quality, which translates to substantial time and cost savings when applied to pediatric MRI examinations.
Martinot, Amanda, Peter Abbink, Onur Afacan, Anna Prohl, Roderick Bronson, Jonathan Hecht, Erica Borducchi, et al. 2018. “Fetal Neuropathology in Zika Virus-Infected Pregnant Female Rhesus Monkeys”. Cell 173 (5): 1111-1122.e10. https://doi.org/10.1016/j.cell.2018.03.019.
The development of interventions to prevent congenital Zika syndrome (CZS) has been limited by the lack of an established nonhuman primate model. Here we show that infection of female rhesus monkeys early in pregnancy with Zika virus (ZIKV) recapitulates many features of CZS in humans. We infected 9 pregnant monkeys with ZIKV, 6 early in pregnancy (weeks 6-7 of gestation) and 3 later in pregnancy (weeks 12-14 of gestation), and compared findings with uninfected controls. 100% (6 of 6) of monkeys infected early in pregnancy exhibited prolonged maternal viremia and fetal neuropathology, including fetal loss, smaller brain size, and histopathologic brain lesions, including microcalcifications, hemorrhage, necrosis, vasculitis, gliosis, and apoptosis of neuroprogenitor cells. High-resolution MRI demonstrated concordant lesions indicative of deep gray matter injury. We also observed spinal, ocular, and neuromuscular pathology. Our data show that vascular compromise and neuroprogenitor cell dysfunction are hallmarks of CZS pathogenesis, suggesting novel strategies to prevent and to treat this disease.
Gholipour, Ali, Judith Estroff, Carol Barnewolt, Richard Robertson, Ellen Grant, Borjan Gagoski, Simon Warfield, et al. (2014) 2014. “Fetal MRI: A Technical Update With Educational Aspirations”. Concepts Magn Reson Part A Bridg Educ Res 43 (6): 237-66. https://doi.org/10.1002/cmr.a.21321.
Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies.
Afacan, Onur, Ali Gholipour, Robert Mulkern, Carol Barnewolt, Judy Estroff, Susan Connolly, Richard Parad, Sigrid Bairdain, and Simon Warfield. 2016. “Fetal Lung Apparent Diffusion Coefficient Measurement Using Diffusion-Weighted MRI at 3 Tesla: Correlation With Gestational Age”. J Magn Reson Imaging 44 (6): 1650-55. https://doi.org/10.1002/jmri.25294.
PURPOSE: To evaluate the feasibility of using diffusion-weighted magnetic resonance imaging (DW-MRI) to assess the fetal lung apparent diffusion coefficient (ADC) at 3 Tesla (T). MATERIALS AND METHODS: Seventy-one pregnant women (32 second trimester, 39 third trimester) were scanned with a twice-refocused Echo-planar diffusion-weighted imaging sequence with 6 different b-values in 3 orthogonal diffusion orientations at 3T. After each scan, a region-of-interest (ROI) mask was drawn to select a region in the fetal lung and an automated robust maximum likelihood estimation algorithm was used to compute the ADC parameter. The amount of motion in each scan was visually rated. RESULTS: When scans with unacceptable levels of motion were eliminated, the lung ADC values showed a strong association with gestational age (P < 0.01), increasing dramatically between 16 and 27 weeks and then achieving a plateau around 27 weeks. CONCLUSION: We show that to get reliable estimates of ADC values of fetal lungs, a multiple b-value acquisition, where motion is either corrected or considered, can be performed. J. Magn. Reson. Imaging 2016;44:1650-1655.
Afacan, Onur, Judy Estroff, Edward Yang, Carol Barnewolt, Susan Connolly, Richard Parad, Robert Mulkern, Simon Warfield, and Ali Gholipour. (2019) 2019. “Fetal Echoplanar Imaging: Promises and Challenges”. Top Magn Reson Imaging 28 (5): 245-54. https://doi.org/10.1097/RMR.0000000000000219.
Fetal magnetic resonance imaging (MRI) has been gaining increasing interest in both clinical radiology and research. Echoplanar imaging (EPI) offers a unique potential, as it can be used to acquire images very fast. It can be used to freeze motion, or to get multiple images with various contrast mechanisms that allow studying the microstructure and function of the fetal brain and body organs. In this article, we discuss the current clinical and research applications of fetal EPI. This includes T2*-weighted imaging to better identify blood products and vessels, using diffusion-weighted MRI to investigate connections of the developing brain and using functional MRI (fMRI) to identify the functional networks of the developing brain. EPI can also be used as an alternative structural sequence when banding or standing wave artifacts adversely affect the mainstream sequences used routinely in structural fetal MRI. We also discuss the challenges with EPI acquisitions, and potential solutions. As EPI acquisitions are inherently sensitive to susceptibility artifacts, geometric distortions limit the use of high-resolution EPI acquisitions. Also, interslice motion and transmit and receive field inhomogeneities may create significant artifacts in fetal EPI. We conclude by discussing promising research directions to overcome these challenges to improve the use of EPI in clinical and research applications.
Khan, Shadab, Lana Vasung, Bahram Marami, Caitlin Rollins, Onur Afacan, Cynthia Ortinau, Edward Yang, Simon Warfield, and Ali Gholipour. 2019. “Fetal Brain Growth Portrayed by a Spatiotemporal Diffusion Tensor MRI Atlas Computed from in Utero Images”. Neuroimage 185: 593-608. https://doi.org/10.1016/j.neuroimage.2018.08.030.
Altered structural fetal brain development has been linked to neuro-developmental disorders. These structural alterations can be potentially detected in utero using diffusion tensor imaging (DTI). However, acquisition and reconstruction of in utero fetal brain DTI remains challenging. Until now, motion-robust DTI methods have been employed for reconstruction of in utero fetal DTIs. However, due to the unconstrained fetal motion and permissible in utero acquisition times, these methods yielded limited success and have typically resulted in noisy DTIs. Consequently, atlases and methods that could enable groupwise studies, multi-modality imaging, and computer-aided diagnosis from in utero DTIs have not yet been developed. This paper presents the first DTI atlas of the fetal brain computed from in utero diffusion-weighted images. For this purpose an algorithm for computing an unbiased spatiotemporal DTI atlas, which integrates kernel-regression in age with a diffeomorphic tensor-to-tensor registration of motion-corrected and reconstructed individual fetal brain DTIs, was developed. Our new algorithm was applied to a set of 67 fetal DTI scans acquired from healthy fetuses each scanned at a gestational age between 21 and 39 weeks. The neurodevelopmental trends in the fetal brain, characterized by the atlas, were qualitatively and quantitatively compared with the observations reported in prior ex vivo and in utero studies, and with results from imaging gestational-age equivalent preterm infants. Our major findings revealed early presence of limbic fiber bundles, followed by the appearance and maturation of projection pathways (characterized by an age related increase in FA) during late 2nd and early 3rd trimesters. During the 3rd trimester association fiber bundles become evident. In parallel with the appearance and maturation of fiber bundles, from 21 to 39 gestational weeks gradual disappearance of the radial coherence of the telencephalic wall was qualitatively identified. These results and analyses show that our DTI atlas of the fetal brain is useful for reliable detection of major neuronal fiber bundle pathways and for characterization of the fetal brain reorganization that occurs in utero. The atlas can also serve as a useful resource for detection of normal and abnormal fetal brain development in utero.
Kurugol, Sila, Catherine Seager, Hatim Thaker, Jaume Coll-Font, Onur Afacan, Reid Nichols, Simon Warfield, Richard Lee, and Jeanne Chow. (2020) 2020. “Feed and Wrap Magnetic Resonance Urography Provides Anatomic and Functional Imaging in Infants Without Anesthesia”. J Pediatr Urol 16 (1): 116-20. https://doi.org/10.1016/j.jpurol.2019.11.002.
OBJECTIVE: To describe a technique for performing magnetic resonance urogram (MRU) in infants without sedation or anesthesia. METHODS: Eighteen infants underwent MRU in the absence of sedating medications using a 'feed and wrap' technique (FW-MRU). Dynamic contrast enhanced images were obtained. Dynamic radial VIBE and compressed sensing image reconstruction were used to correct for motion artifact. RESULTS: Seventeen of the 18 patients had successful FW-MRU. Feed and wrap' magnetic resonance urogram provided high-quality anatomic and functional renal data. CONCLUSION: Initial experience with FW-MRU demonstrates it to be a promising anesthesia-free modality for obtaining anatomic and functional imaging of the urinary tract in infants.
Akhondi-Asl, Alireza, Onur Afacan, Mukund Balasubramanian, Robert Mulkern, and Simon Warfield. 2016. “Fast Myelin Water Fraction Estimation Using 2D Multislice CPMG”. Magn Reson Med 76 (4): 1301-13. https://doi.org/10.1002/mrm.26034.
PURPOSE: T2 relaxometry based on multiexponential fitting to a single slice multiecho sequence has been the most common MRI technique for myelin water fraction mapping, where the short T2 is associated with myelin water. However, very long acquisition times and physically unrealistic models for T2 distribution are limitations of this approach. We present a novel framework for myelin imaging which substantially increases the imaging speed and myelin water fraction estimation accuracy. METHOD: We used the 2D multislice Carr-Purcell-Meiboom-Gill sequence to increase the volume coverage. To compensate for nonideal slice profiles, we numerically solved the Bloch equations for a range of T2 and B1 inhomogeneity scales to construct the bases for the estimation of the T2 distribution. We used a finite mixture of continuous parametric distributions to describe the complete T2 spectrum and used the constrained variable projection optimization algorithm to estimate myelin water fraction. To validate our model, synthetic, phantom, and in vivo brain experiments were conducted. RESULTS: Using the Bloch equations, we can model the slice profile and construct the forward model of the T2 curve. Our method estimated myelin water fraction with smaller error than the nonnegative least squares algorithm. CONCLUSIONS: The proposed framework can be used for reliable whole brain myelin imaging with a resolution of 2×2×4  mm3 in ≈17  min. Magn Reson Med 76:1301-1313, 2016. © 2015 Wiley Periodicals, Inc.
Sui, Yao, Onur Afacan, Ali Gholipour, and Simon Warfield. (2021) 2021. “Fast and High-Resolution Neonatal Brain MRI Through Super-Resolution Reconstruction From Acquisitions With Variable Slice Selection Direction”. Front Neurosci 15: 636268. https://doi.org/10.3389/fnins.2021.636268.
The brain of neonates is small in comparison to adults. Imaging at typical resolutions such as one cubic mm incurs more partial voluming artifacts in a neonate than in an adult. The interpretation and analysis of MRI of the neonatal brain benefit from a reduction in partial volume averaging that can be achieved with high spatial resolution. Unfortunately, direct acquisition of high spatial resolution MRI is slow, which increases the potential for motion artifact, and suffers from reduced signal-to-noise ratio. The purpose of this study is thus that using super-resolution reconstruction in conjunction with fast imaging protocols to construct neonatal brain MRI images at a suitable signal-to-noise ratio and with higher spatial resolution than can be practically obtained by direct Fourier encoding. We achieved high quality brain MRI at a spatial resolution of isotropic 0.4 mm with 6 min of imaging time, using super-resolution reconstruction from three short duration scans with variable directions of slice selection. Motion compensation was achieved by aligning the three short duration scans together. We applied this technique to 20 newborns and assessed the quality of the images we reconstructed. Experiments show that our approach to super-resolution reconstruction achieved considerable improvement in spatial resolution and signal-to-noise ratio, while, in parallel, substantially reduced scan times, as compared to direct high-resolution acquisitions. The experimental results demonstrate that our approach allowed for fast and high-quality neonatal brain MRI for both scientific research and clinical studies.

E

Machado-Rivas, Fedel, Camilo Jaimes, Benoit Scherrer, Leslie Benson, Mark Gorman, Simon Warfield, and Onur Afacan. 2022. “Evaluation of White Matter Microstructure in Pediatric Onset Multiple Sclerosis With Diffusion Compartment Imaging”. J Neuroimaging. https://doi.org/10.1111/jon.13038.
BACKGROUND AND PURPOSE: Pediatric-onset multiple sclerosis (POMS) shows earlier axonal involvement and greater axonal loss than in adults. We aim to characterize the white matter (WM) microstructural changes in POMS using a diffusion compartment imaging (DCI) model and compare it to standard diffusion tensor imaging (DTI). METHODS: Eleven patients (2 males, mean age 18.8 ± 3.9 years) with a diagnosis of relapsing and remitting POMS (mean age at disease onset 13.8 ± 2.9 years, mean duration 5.1 ± 1.9 years) and healthy controls (8 males, mean age 26.4 ± 6.5 years) were recruited and imaged at 3 T. A 90-gradient set Cube and Sphere acquisition and a novel DCI model known as DIstribution of Anisotropic MicrOstructural eNvironments with Diffusion-weighted imaging (DIAMOND) were used to calculate a single anisotropic compartment, an isotropic compartment, and a free diffusion compartment. Lesions and contralateral normal-appearing white matter (NAWM) in patients and whole brain WM for controls were labeled. RESULTS: Eleven patients and 11 controls were recruited. When comparing lesions and contralateral NAWM in patients using DCI, compartmental axial diffusivity, radial diffusivity (cRD), and mean diffusivity (cMD) were higher in lesions. Conversely, compartmental fractional anisotropy (cFA) and heterogeneity index were lower in lesions. An analysis of DTI equivalents showed the same trends. In whole-brain NAWM of patients compared to controls, cRD and cMD were higher and cFA was lower in patients. CONCLUSION: Lesions in POMS can be accurately characterized by a DCI model. Incipient changes in NAWM seen in DCI may not be readily observable by DTI.