Robotic Implants
Description:
We are proposing a new class of medical devices that we call robotic implants. These devices are comprised of robots designed to autonomously regulate biological processes inside the body. Potential benefits of these devices include restoration of degraded or missing biological functionality, induction of tissue growth, as well as a reduction in the number of surgeries necessary to treat a patient with a chronic condition. These devices may move through the body or reside in one location and employ their degrees of freedom to interact with tissue structures. For example, they could automatically regulate flow resistance in the vasculature or adjust the length and compliance of tissues.
A specific pediatric application is the treatment of long gap esophageal atresia. This is a congenital defect in which a portion of the esophagus is missing (see Figure). We are developing a robotic implant to apply traction forces to the two disconnected esophageal segments to induce sufficient tissue growth so that the two ends can be joined together to form a functioning esophagus. In contrast to the current manual method of externally applied traction forces, the implant offers the potential to avoid multi-week patient paralysis and sedation while substantially reducing treatment time and cost.
This technology can be licensed from Boston Children's Hospital.