Publications

2025

2024

Mendez-Dorantes, Carlos, Xi Zeng, Jennifer A. Karlow, Phillip Schofield, Serafina Turner, Jupiter Kalinowski, Danielle Denisko, Eunjung Alice Lee, Kathleen H. Burns, and Cheng-Zhong Zhang. 2024. “Chromosomal Rearrangements and Instability Caused by the LINE-1 Retrotransposon”. BioRxiv, Accepted.

LINE-1 (L1) retrotransposition is widespread in many cancers, especially those with a high burden of chromosomal rearrangements. However, whether and to what degree L1 activity directly impacts genome integrity is unclear. Here, we apply whole-genome sequencing to experimental models of L1 expression to comprehensively define the spectrum of genomic changes caused by L1. We provide definitive evidence that L1 expression frequently and directly causes both local and long-range chromosomal rearrangements, small and large segmental copy-number alterations, and subclonal copy-number heterogeneity due to ongoing chromosomal instability. Mechanistically, all these alterations arise from DNA double-strand breaks (DSBs) generated by L1-encoded ORF2p. The processing of ORF2p-generated DSB ends prior to their ligation can produce diverse rearrangements of the target sequences. Ligation between DSB ends generated at distal loci can generate either stable chromosomes or unstable dicentric, acentric, or ring chromosomes that undergo subsequent evolution through breakage-fusion bridge cycles or DNA fragmentation. Together, these findings suggest L1 is a potent mutagenic force capable of driving genome evolution beyond simple insertions.

D’Gama, Alissa M., Westley Phillips, Yilan Wang, Michelle Y. Chiu, Yasmine Chahine, Amanda C. Swanson, Richard S. Smith, et al. 2024. “Analysis of DNA from Brain Tissue on Stereo-EEG Electrodes Reveals Mosaic Epilepsy-Related Variants”. Brain Communications, Accepted.

Somatic mosaic variants contribute to focal epilepsy, but genetic analysis has been limited to patients with drug-resistant epilepsy (DRE) who undergo surgical resection, as the variants are mainly brain-limited. Stereoelectroencephalography (sEEG) has become part of the evaluation for many patients with focal DRE, and sEEG electrodes provide a potential source of small amounts of brain-derived DNA. We aimed to identify, validate, and assess the distribution of potentially clinically relevant mosaic variants in DNA extracted from trace brain tissue on individual sEEG electrodes.

We enrolled a prospective cohort of eleven pediatric patients with DRE who had sEEG electrodes implanted for invasive monitoring, one of whom was previously reported. We extracted unamplified DNA from the trace brain tissue on each sEEG electrode and also performed whole-genome amplification for each sample. We extracted DNA from resected brain tissue and blood/saliva samples where available. We performed deep panel and exome sequencing on a subset of samples from each case and analysis for potentially clinically relevant candidate germline and mosaic variants. We validated candidate mosaic variants using amplicon sequencing and assessed the variant allele fraction (VAF) in amplified and unamplified electrode-derived DNA and across electrodes.

We extracted DNA from >150 individual electrodes from 11 individuals and obtained higher concentrations of whole-genome amplified vs unamplified DNA. Immunohistochemistry confirmed the presence of neurons in the brain tissue on electrodes. Deep sequencing and analysis demonstrated similar depth of coverage between amplified and unamplified samples but significantly more called mosaic variants in amplified samples. In addition to the mosaic PIK3CA variant detected in a previously reported case from our group, we identified and validated four potentially clinically relevant mosaic variants in electrode-derived DNA in three patients who underwent laser ablation and did not have resected brain tissue samples available. The variants were detected in both amplified and unamplified electrode-derived DNA, with higher VAFs observed in DNA from electrodes in closest proximity to the electrical seizure focus in some cases.

This study demonstrates that mosaic variants can be identified and validated from DNA extracted from trace brain tissue on individual sEEG electrodes in patients with drug-resistant focal epilepsy and in both amplified and unamplified electrode-derived DNA samples. Our findings support a relationship between the extent of regional genetic abnormality and electrophysiology, and suggest that with further optimization, this minimally invasive diagnostic approach holds promise for advancing precision medicine for patients with DRE as part of the surgical evaluation.

Maury, Eduardo A., Attila Jones, Vladimir Seplyarskiy, Thanh Thanh L. Nguyen, Chaggai Rosenbluh, Taejong Bae, Yifan Wang, et al. 2024. “Somatic Mosaicism in Schizophrenia Brains Reveals Prenatal Mutational Processes”. Science 386 (6718): 217-24. https://doi.org/DOI: 10.1126/science.adq1456.

Germline mutations modulate the risk of developing schizophrenia (SCZ). Much less is known about the role of mosaic somatic mutations in the context of SCZ. Deep (239×) whole-genome sequencing (WGS) of brain neurons from 61 SCZ cases and 25 controls postmortem identified mutations occurring during prenatal neurogenesis. SCZ cases showed increased somatic variants in open chromatin, with increased mosaic CpG transversions (CpG>GpG) and T>G mutations at transcription factor binding sites (TFBSs) overlapping open chromatin, a result not seen in controls. Some of these variants alter gene expression, including SCZ risk genes and genes involved in neurodevelopment. Although these mutational processes can reflect a difference in factors indirectly involved in disease, increased somatic mutations at developmental TFBSs could also potentially contribute to SCZ.

Lee, Arthur S., Lauren J. Ayers, Michael Kosicki, Wai-Man Chan, Lydia N. Fozo, Brandon M. Pratt, Thomas E. Collins, et al. 2024. “A Cell Type-Aware Framework for Nominating Non-Coding Variants in Mendelian Regulatory Disorders”. Nature Communications 15: 8268 .

Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generate single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. We evaluate enhancer activity for 59 elements using an in vivo transgenic assay and validate 44 (75%), demonstrating that single cell accessibility can be a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieve significant reduction in our variant search space and nominate candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 – as well as candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work delivers non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.

Gunter-Rahman, Fatima, Shayna Mallett, Frédérique White, Pierre-Étienne Jacques, Ravikiran M Raju, Marie-France Hivert, and Eunjung Alice Lee. 2024. “Maternal Obesity and Offspring Neurodevelopment Are Associated With Hypoxic Gene Expression in Term Human Placenta.”. BioRxiv. https://doi.org/10.1101/2024.07.10.602900.

One third of women in the United States are affected by obesity during pregnancy. Maternal obesity (MO) is associated with an increased risk of neurodevelopmental and metabolic disorders in the offspring. The placenta, located at the maternal-fetal interface, is a key organ determining fetal development and likely contributes to programming of long-term offspring health. We profiled the term placental transcriptome in humans (pre-pregnancy BMI 35+ [MO condition] or 18.5-25 [lean condition]) using single-nucleus RNA-seq to compare expression profiles in MO versus lean conditions, and to reveal potential mechanisms underlying offspring disease risk. We recovered 62,864 nuclei of high quality from 10 samples each from the maternal-facing and fetal-facing sides of the placenta. On both sides in several cell types, MO was associated with upregulation of hypoxia response genes. On the maternal-facing side only, hypoxia gene expression was associated with offspring neurodevelopmental measures, in Gen3G, an independent pregnancy cohort with bulk placental tissue RNA-seq. We leveraged Gen3G to determine genes that correlated with impaired neurodevelopment and found these genes to be most highly expressed in extravillous trophoblasts (EVTs). EVTs further showed the strongest correlation between neurodevelopment impairment gene scores (NDIGSs) and the hypoxia gene score. We reanalyzed gene expression of cultured EVTs, and found increased NDIGSs associated with exposure to hypoxia. Among EVTs, accounting for the hypoxia gene score attenuated 44% of the association between BMI and NDIGSs. These data suggest that hypoxia in EVTs may be a key process in the neurodevelopmental programming of fetal exposure to MO.

Hwang, Sung-Yeon, Hyewon Kim, Danielle Denisko, Boxun Zhao, Dohoon Lee, Jiseok Jeong, Jinuk Kim, et al. 2024. “Human Cytomegalovirus Harnesses Host L1 Retrotransposon for Efficient Replication.”. Nature Communications 15 (1): 7640. https://doi.org/10.1038/s41467-024-51961-y.

Genetic parasites, including viruses and transposons, exploit components from the host for their own replication. However, little is known about virus-transposon interactions within host cells. Here, we discover a strategy where human cytomegalovirus (HCMV) hijacks L1 retrotransposon encoded protein during its replication cycle. HCMV infection upregulates L1 expression by enhancing both the expression of L1-activating transcription factors, YY1 and RUNX3, and the chromatin accessibility of L1 promoter regions. Increased L1 expression, in turn, promotes HCMV replicative fitness. Affinity proteomics reveals UL44, HCMV DNA polymerase subunit, as the most abundant viral binding protein of the L1 ribonucleoprotein (RNP) complex. UL44 directly interacts with L1 ORF2p, inducing DNA damage responses in replicating HCMV compartments. While increased L1-induced mutagenesis is not observed in HCMV for genetic adaptation, the interplay between UL44 and ORF2p accelerates viral DNA replication by alleviating replication stress. Our findings shed light on how HCMV exploits host retrotransposons for enhanced viral fitness.

Choi, Jaejoon, and Eunjung Alice Lee. 2024. “Analysis of REST Binding Sites With Canonical and Non-Canonical Motifs in Human Cell Lines.”. BMC Medical Genomics 17 (1): 92. https://doi.org/10.1186/s12920-024-01860-4.

BACKGROUND: Repressor element 1 (RE1) silencing transcription factor (REST) is a transcriptional repressor abundantly expressed in aging human brains. It is known to regulate genes associated with oxidative stress, inflammation, and neurological disorders by binding to a canonical form of sequence motif and its non-canonical variations. Although analysis of genomic sequence motifs is crucial to understand transcriptional regulation by transcription factors (TFs), a comprehensive characterization of various forms of RE1 motifs in human cell lines has not been performed.

RESULTS: Here, we analyzed 23 ENCODE REST ChIP-seq datasets from diverse human cell lines and identified a non-redundant set of 68,975 loci with ChIP-seq peaks. Our systematic characterization of these binding sites revealed that the canonical form of REST binding motif was found primarily in ChIP-seq peaks shared across multiple cell lines, while non-canonical forms of motifs were identified in both cell-line-specific binding sites and those shared across cell lines. Remarkably, we observed a notable prevalence of non-canonical motifs that corresponded to half segments of the canonical motif. Furthermore, our analysis unveiled the presence of cell-line-specific REST binding patterns, as evidenced by the clustering of ChIP-seq experiments according to their respective cell lines. This observation underscores the cell-line specificity of REST binding at certain genomic loci, implying intricate cell-line-specific regulatory mechanisms.

CONCLUSIONS: Overall, our study provides a comprehensive characterization of REST binding motifs in human cell lines and genome-wide RE1 motif profiles. These findings contribute to a deeper understanding of REST-mediated transcriptional regulation and highlight the importance of considering cell-line-specific effects in future investigations.

Huang, August Yue, Zinan Zhou, Maya Talukdar, Michael B Miller, Brian Chhouk, Liz Enyenihi, Ila Rosen, et al. 2024. “Somatic Cancer Driver Mutations Are Enriched and Associated With Inflammatory States in Alzheimer’s Disease Microglia.”. BioRxiv. https://doi.org/10.1101/2024.01.03.574078.

Alzheimer's disease (AD) is an age-associated neurodegenerative disorder characterized by progressive neuronal loss and pathological accumulation of the misfolded proteins amyloid-β and tau1,2. Neuroinflammation mediated by microglia and brain-resident macrophages plays a crucial role in AD pathogenesis1-5, though the mechanisms by which age, genes, and other risk factors interact remain largely unknown. Somatic mutations accumulate with age and lead to clonal expansion of many cell types, contributing to cancer and many non-cancer diseases6,7. Here we studied somatic mutation in normal aged and AD brains by three orthogonal methods and in three independent AD cohorts. Analysis of bulk RNA sequencing data from 866 samples from different brain regions revealed significantly higher ( two-fold) overall burdens of somatic single-nucleotide variants (sSNVs) in AD brains compared to age-matched controls. Molecular-barcoded deep (>1000X) gene panel sequencing of 311 prefrontal cortex samples showed enrichment of sSNVs and somatic insertions and deletions (sIndels) in cancer driver genes in AD brain compared to control, with recurrent, and often multiple, mutations in genes implicated in clonal hematopoiesis (CH)8,9. Pathogenic sSNVs were enriched in CSF1R+ microglia of AD brains, and the high proportion of microglia (up to 40%) carrying some sSNVs in cancer driver genes suggests mutation-driven microglial clonal expansion (MiCE). Analysis of single-nucleus RNA sequencing (snRNAseq) from temporal neocortex of 62 additional AD cases and controls exhibited nominally increased mosaic chromosomal alterations (mCAs) associated with CH10,11. Microglia carrying mCA showed upregulated pro-inflammatory genes, resembling the transcriptomic features of disease-associated microglia (DAM) in AD. Our results suggest that somatic driver mutations in microglia are common with normal aging but further enriched in AD brain, driving MiCE with inflammatory and DAM signatures. Our findings provide the first insights into microglial clonal dynamics in AD and identify potential new approaches to AD diagnosis and therapy.

Lai, Jenny, Didem Demirbas, Junho Kim, Ailsa M Jeffries, Allie Tolles, Junseok Park, Thomas W Chittenden, et al. 2024. “ATM-Deficiency-Induced Microglial Activation Promotes Neurodegeneration in Ataxia-Telangiectasia.”. Cell Reports 43 (1): 113622. https://doi.org/10.1016/j.celrep.2023.113622.

While ATM loss of function has long been identified as the genetic cause of ataxia-telangiectasia (A-T), how it leads to selective and progressive degeneration of cerebellar Purkinje and granule neurons remains unclear. ATM expression is enriched in microglia throughout cerebellar development and adulthood. Here, we find evidence of microglial inflammation in the cerebellum of patients with A-T using single-nucleus RNA sequencing. Pseudotime analysis revealed that activation of A-T microglia preceded upregulation of apoptosis-related genes in granule and Purkinje neurons and that microglia exhibited increased neurotoxic cytokine signaling to granule and Purkinje neurons in A-T. To confirm these findings experimentally, we performed transcriptomic profiling of A-T induced pluripotent stem cell (iPSC)-derived microglia, which revealed cell-intrinsic microglial activation of cytokine production and innate immune response pathways compared to controls. Furthermore, A-T microglia co-culture with either control or A-T iPSC-derived neurons was sufficient to induce cytotoxicity. Taken together, these studies reveal that cell-intrinsic microglial activation may promote neurodegeneration in A-T.