Neonatologists and neonatal-perinatal trainees continue to be invested in the cardiovascular care of the newborn, many focusing their careers in this area of expertise. Multiple formalized structured and non-structured training pathways have evolved for neonatologists caring for infants with congenital heart disease and other cardiovascular pathologies. Furthermore, the evolution of neonatal hemodynamic science over the past decade has also spawned a formal training pathway in hemodynamics consultation to enhance standard of care and guide the management of infants at risk for cardiovascular compromise. Neonatologists have also chosen to expand upon on their neonatology training with clinical and research exposure to enhance their roles in neonatal cardiovascular care, including fetal care consultation, delivery room management, and perioperative cardiac intensive care consultation. To provide insight and career guidance to interested neonatal trainees and early career physicians, this perspective article highlights several different pathways in the care of neonates with cardiovascular disease.
Publications
2022
IMPORTANCE: Infants with hypotonia can present with a variety of potentially severe clinical signs and symptoms and often require invasive testing and multiple procedures. The wide range of clinical presentations and potential etiologies leaves diagnosis and prognosis uncertain, underscoring the need for rapid elucidation of the underlying genetic cause of disease.
OBSERVATIONS: The clinical application of exome sequencing or genome sequencing has dramatically improved the timely yield of diagnostic testing for neonatal hypotonia, with diagnostic rates of greater than 50% in academic neonatal intensive care units (NICUs) across Australia, Canada, the UK, and the US, which compose the International Precision Child Health Partnership (IPCHiP). A total of 74% (17 of 23) of patients had a change in clinical care in response to genetic diagnosis, including 2 patients who received targeted therapy. This narrative review discusses the common causes of neonatal hypotonia, the relative benefits and limitations of available testing modalities used in NICUs, and hypotonia management recommendations.
CONCLUSIONS AND RELEVANCE: This narrative review summarizes the causes of neonatal hypotonia and the benefits of prompt genetic diagnosis, including improved prognostication and identification of targeted treatments which can improve the short-term and long-term outcomes. Institutional resources can vary among different NICUs; as a result, consideration should be given to rule out a small number of relatively unique conditions for which rapid targeted genetic testing is available. Nevertheless, the consensus recommendation is to use rapid genome or exome sequencing as a first-line testing option for NICU patients with unexplained hypotonia. As part of the IPCHiP, this diagnostic experience will be collected in a central database with the goal of advancing knowledge of neonatal hypotonia and improving evidence-based practice.
Congenital heart disease (CHD) is present in 1% of live births, yet identification of causal mutations remains challenging. We hypothesized that genetic determinants for CHDs may lie in the protein interactomes of transcription factors whose mutations cause CHDs. Defining the interactomes of two transcription factors haplo-insufficient in CHD, GATA4 and TBX5, within human cardiac progenitors, and integrating the results with nearly 9,000 exomes from proband-parent trios revealed an enrichment of de novo missense variants associated with CHD within the interactomes. Scoring variants of interactome members based on residue, gene, and proband features identified likely CHD-causing genes, including the epigenetic reader GLYR1. GLYR1 and GATA4 widely co-occupied and co-activated cardiac developmental genes, and the identified GLYR1 missense variant disrupted interaction with GATA4, impairing in vitro and in vivo function in mice. This integrative proteomic and genetic approach provides a framework for prioritizing and interrogating genetic variants in heart disease.
The application of next-generation sequencing to study congenital heart disease (CHD) is increasingly providing new insights into the causes and mechanisms of this prevalent birth anomaly. Whole-exome sequencing analysis identifies damaging gene variants altering single or contiguous nucleotides that are assigned pathogenicity based on statistical analyses of families and cohorts with CHD, high expression in the developing heart and depletion of damaging protein-coding variants in the general population. Gene classes fulfilling these criteria are enriched in patients with CHD and extracardiac abnormalities, evidencing shared pathways in organogenesis. Developmental single-cell transcriptomic data demonstrate the expression of CHD-associated genes in particular cell lineages, and emerging insights indicate that genetic variants perturb multicellular interactions that are crucial for cardiogenesis. Whole-genome sequencing analyses extend these observations, identifying non-coding variants that influence the expression of genes associated with CHD and contribute to the estimated 55% of unexplained cases of CHD. These approaches combined with the assessment of common and mosaic genetic variants have provided a more complete knowledge of the causes and mechanisms of CHD. Such advances provide knowledge to inform the clinical care of patients with CHD or other birth defects and deepen our understanding of the complexity of human development. In this Review, we highlight known and candidate CHD-associated human genes and discuss how the integration of advances in developmental biology research can provide new insights into the genetic contributions to CHD.
2021
Quantification of proton magnetic resonance spectroscopy (1 H-MRS) data is commonly performed by referencing the ratio of the signal from one metabolite, or metabolite group, to that of another, or to the water signal. Both approaches have drawbacks: ratios of two metabolites can be difficult to interpret because study effects may be driven by either metabolite, and water-referenced data must be corrected for partial volume and relaxation effects in the water signal. Here, we introduce combined reference (CRef) analysis, which compensates for both limitations. In this approach, metabolites are referenced to the combined signal of several reference metabolites or metabolite groups. The approach does not require the corrections necessary for water scaling and produces results that are less sensitive to the variation of any single reference signal, thereby aiding the interpretation of results. We demonstrate CRef analysis using 202 1 H-MRS acquisitions from the brains of 140 infants, scanned at approximately 1 and 3 months of age. We show that the combined signal of seven reference metabolites or metabolite groups is highly correlated with the water signal, corrected for partial volume and relaxation effects associated with cerebral spinal fluid. We also show that the combined reference signal is equally or more uniform across subjects than the reference signals from single metabolites or metabolite groups. We use CRef analysis to quantify metabolite concentration changes during the first several months of life in typically developing infants.
Pregnancy and lactation can change the maternal nutrient reserve. Non-invasive, quantitative markers of maternal nutrient intake could enable personalized dietary recommendations that improve health outcomes in mothers and infants. Macular pigment optical density (MPOD) is a candidate marker, as MPOD values generally reflect carotenoid intake. We evaluated the association of MPOD with dietary and breastmilk carotenoids in postpartum women. MPOD measurements and dietary intake of five carotenoids were obtained from 80 mothers in the first three months postpartum. Breastmilk samples from a subset of mothers were analyzed to determine their nutrient composition. The association between MPOD and dietary or breastmilk carotenoids was quantitatively assessed to better understand the availability and mobilization of carotenoids. Our results showed that dietary α-carotene was positively correlated with MPOD. Of the breastmilk carotenoids, 13-cis-lutein and trans-lutein were correlated with MPOD when controlled for the total lutein in breastmilk. Other carotenoids in breastmilk were not associated with MPOD. Maternal MPOD is positively correlated with dietary intake of α-carotene in the early postpartum period, as well as with the breastmilk content of lutein. MPOD may serve as a potential marker for the intake of carotenoids, especially α-carotene, in mothers in the early postpartum period.
BACKGROUND: Midazolam is a benzodiazepine sedative used in NICUs. Because benzodiazepine's effects include respiratory depression and potential detrimental developmental effects, minimizing exposure could benefit neonates. Dexmedetomidine is routinely used for sedation in older pediatric populations. We implemented a quality improvement initiative with the aim of decreasing midazolam infusions by 20% through use of dexmedetomidine.
METHODS: A multidisciplinary committee created a sedation guideline that included standardized dexmedetomidine dosing escalation and weaning. Baseline data collection occurred from January 2015 to February 2018, with intervention from March 2018 to December 2019. Percentage of sedation episodes with dexmedetomidine initiated was followed as a process measure. Outcomes measures were percentage of eligible infants receiving midazolam infusions and midazolam-free days per sedation episode. Bradycardia with dexmedetomidine, unplanned extubation rates, and morphine dosage were monitored as balancing measures.
RESULTS: Our study included 434 episodes of sedation in 386 patients. Dexmedetomidine initiation increased from 18% to 49%. The intervention was associated with a significant reduction in midazolam initiation by 30%, from 95% to 65%, with special cause variation on statistical process control chart analysis. Midazolam-free days per sedation episode increased from 0.3 to 2.2 days, and patients receiving dexmedetomidine had lower midazolam doses (1.3 mg/kg per day versus 2.2 mg/kg per day, P = 5.97 × 10-04). Bradycardia requiring discontinuation of dexmedetomidine, unplanned extubation rates, and morphine doses were unchanged.
CONCLUSIONS: Implementation of a quality improvement initiative was successful in reducing the percentage of patients receiving midazolam infusions and increased midazolam-free days per sedation episode, revealing an overall reduction in benzodiazepine exposure while maintaining adequate sedation.
Neurodevelopmental disabilities are the most common noncardiac conditions in patients with congenital heart disease (CHD). Executive function skills have been frequently observed to be decreased among children and adults with CHD compared with peers, but a neuroanatomical basis for the association is yet to be identified. In this study, we quantified sulcal pattern features from brain magnetic resonance imaging data obtained during adolescence among 41 participants with tetralogy of Fallot (ToF) and 49 control participants using a graph-based pattern analysis technique. Among patients with ToF, right-hemispheric sulcal pattern similarity to the control group was decreased (0.7514 vs. 0.7553, P = 0.01) and positively correlated with neuropsychological testing values including executive function (r = 0.48, P < 0.001). Together these findings suggest that sulcal pattern analysis may be a useful marker of neurodevelopmental risk in patients with CHD. Further studies may elucidate the mechanisms leading to different alterations in sulcal patterning.
microRNAs (miRNAs) regulate messenger RNA (mRNA) abundance and translation during key developmental processes including muscle differentiation. Assessment of miRNA targets can provide insight into muscle biology and gene expression profiles altered by disease. mRNA and miRNA libraries were generated from C2C12 myoblasts during differentiation, and predicted miRNA targets were identified based on presence of miRNA binding sites and reciprocal expression. Seventeen miRNAs were differentially expressed at all time intervals (comparing days 0, 2, and 5) of differentiation. mRNA targets of differentially expressed miRNAs were enriched for functions related to calcium signaling and sarcomere formation. To evaluate this relationship in a disease state, we evaluated the miRNAs differentially expressed in human congenital myotonic dystrophy (CMD) myoblasts and compared with normal control. Seventy-four miRNAs were differentially expressed during healthy human myocyte maturation, of which only 12 were also up- or downregulated in CMD patient cells. The 62 miRNAs that were only differentially expressed in healthy cells were compared with differentiating C2C12 cells. Eighteen of the 62 were conserved in mouse and up- or down-regulated during mouse myoblast differentiation, and their C2C12 targets were enriched for functions related to muscle differentiation and contraction.