Accurate characterization of in-utero brain development is essential for understanding typical and atypical neurodevelopment. Building upon previous efforts to construct spatiotemporal fetal brain MRI atlases, we present the CRL-2025 fetal brain atlas, which is a spatiotemporal (4D) atlas of the developing fetal brain between 21 and 37 gestational weeks. This atlas is constructed from carefully processed MRI scans of 160 fetuses with typically-developing brains using a diffeomorphic deformable registration framework integrated with kernel regression on age. CRL-2025 uniquely includes detailed tissue segmentations, transient white matter compartments, and parcellation into 126 anatomical regions. This atlas offers significantly enhanced anatomical details over the CRL-2017 atlas, and is released along with the CRL diffusion MRI atlas with its newly created tissue segmentation and labels as well as deep learning-based multiclass segmentation models for fine-grained fetal brain MRI segmentation. The CRL-2025 atlas and its associated tools provide a robust and scalable platform for fetal brain MRI segmentation, groupwise analysis, and early neurodevelopmental research, and these materials are publicly released to support the broader research community.
Journal Papers
M
L
I
Diffusion-weighted imaging (DWI) during MR enterography helps identify bowel inflammation in Crohn's disease (CD). However, image quality is compromised by geometric distortions from B0 field variations and physiological motion, making it challenging for radiologists to correlate findings between DWI and structural images. Traditional correction methods using reversed polarity scans are ineffective due to motion between acquisitions, which limits accurate estimation of intravoxel incoherent motion (IVIM) parameters. We propose a dual-echo echo-planar imaging (EPI) method that retrospectively corrects both geometric distortions and motion in 3T bowel DWI by accounting for field changes during peristalsis and breathing. We added a 5- to 7-min dual-echo EPI DW sequence (eight b-values, six directions) to the clinical MR enterography protocol of 21 patients with suspected CD at 3T MRI. Distortion correction was applied based on dynamically estimated fields from dual-echo DWI, followed by intra-volume registration between odd-even slices and inter-volume registration for motion correction. Two experienced board-certified radiologists evaluated the severity of the disease using simplified magnetic resonance index of activity (MaRIA) scores. Based on their consensus scores, patients were categorized into three groups: no active disease (MaRIA score = 0), active disease (MaRIA score = 1-2), and severe disease (MaRIA score = 3-5). The proposed DWI correction pipeline improved DWI/T2-weighted image Dice similarity from 0.73 to 0.89, enabling better correlation of findings between structural and DW-MR images and enhancing DWI's clinical value. Corrected IVIM parameters showed stronger correlations with MaRIA scores (D: ρ = -0.93; f: ρ = -0.94, p < 0.001) compared to uncorrected parameters (D: ρ = -0.68, p = 0.001; f: ρ = -0.35, p = 0.118). Diagnostic sensitivity increased from 0.44 to 0.89, while parameter uncertainty decreased from 35.58% to 19.31% for D and 63.48% to 40.40% for f (p < 0.001). These improvements strengthen quantitative IVIM imaging for CD assessment, potentially reducing reliance on contrast imaging while offering enhanced tissue perfusion and diffusion insights.