DNA sequences with high affinity for transcription factors occur more frequently in the genome than instances of genes bound or regulated by these factors. It is not clear what factors determine the genome-wide pattern of binding or regulation for a given transcription factor. We used an integrated approach to study how trans influences shape the binding and regulatory landscape of Pho4, a budding yeast transcription factor activated in response to phosphate limitation. We find that nucleosomes significantly restrict Pho4 binding. At nucleosome-depleted sites, competition from another transcription factor, Cbf1, determines Pho4 occupancy, raising the threshold for transcriptional activation in phosphate replete conditions and preventing Pho4 activation of genes outside the phosphate regulon during phosphate starvation. Pho4 binding is not sufficient for transcriptional activation-a cooperative interaction between Pho2 and Pho4 specifies genes that are activated. Combining these experimental observations, we are able to globally predict Pho4 binding and its functionality.
Publications
2011
2008
As a hepatitis B virus (HBV) envelope domain, preS plays significant roles in receptor recognition and viral infection. However, the regions critical for maintaining a stable and functional conformation of preS are still unclear and require further investigation. In order to unravel these regions, serially truncated fragments of preS were constructed and expressed in Escherichia coli. Their solubility, stability, secondary structure, and affinity to polyclonal antibodies and hepatocytes were examined. The results showed that amino acids 31-36 were vital for its stable conformation, and the absence of 10-36 amino acids significantly reduced its binding to polyclonal antibodies as well as hepatocytes. The most stable fragment 1-120 (preS1 + N-terminal 12 amino acids of preS2), perhaps the core of preS, was discovered, which bound to HepG2 cells most tightly. Moreover, the availability of large amounts of well-folded and stable preS1-120 enables us to carry out further structural determination and mechanistic study on HBV infection.
2007
BACKGROUND: Hepatitis B virus (HBV) infection is a serious health problem worldwide. Treatment recommendation and response are mainly indicated by viral load, e antigen (HBeAg) seroconversion, and ALT levels. The S antigen (HBsAg) seroconversion is much less frequent. Since HBeAg can be negative in the presence of high viral replication, preS antigen (HBpreSAg) might be a useful indicator in management of chronic HBV infection. RESULTS: A new assay of double antibody sandwich ELISA was established to detect preS antigens. Sera of 104 HBeAg-negative and 50 HBeAg-positive chronic hepatitis B patients have been studied and 23 HBeAg-positive patients were enrolled in a treatment follow-up study. 70% of the HBeAg-positive patients and 47% of the HBeAg-negative patients showed HBpreSAg positive. Particularly, in the HBeAg-negative patients, 30 out of 47 HBpreSAg positive patients showed no evidence of viral replication based on HBV DNA copies. A comparison with HBV DNA copies demonstrated that the overall accuracy of the HBpreSAg test could reach 72% for active HBV replication. HBpreSAg changes were well correlated with changes of HBsAg, HBV DNA and ALT levels during the course of IFN-alpha treatment and follow-up. HBeAg positive patients responded well to treatment when reduction of HBpreSAg levels was more pronounced. CONCLUSION: Our results suggested that HBpreSAg could be detected effectively, and well correlated with HBsAg and HBV DNA copies. The reduction of HBpreSAg levels in conjunction with the HBV DNA copies appears to be an improved predictor of treatment outcome.