CLIF-Net: Intersection-guided Cross-view Fusion Network for Infection Detection from Cranial Ultrasound.

Yu, M., Peterson, M. R., Burgoine, K., Harbaugh, T., Olupot-Olupot, P., Gladstone, M., Hagmann, C., Cowan, F. M., Weeks, A., Morton, S. U., Mulondo, R., Mbabazi-Kabachelor, E., Schiff, S. J., & Monga, V. (2025). CLIF-Net: Intersection-guided Cross-view Fusion Network for Infection Detection from Cranial Ultrasound.. IEEE Transactions on Medical Imaging, PP.

Abstract

This paper addresses the problem of detecting possible serious bacterial infection (pSBI) of infancy, i.e. a clinical presentation consistent with bacterial sepsis in newborn infants using cranial ultrasound (cUS) images. The captured image set for each patient enables multiview imagery: coronal and sagittal, with geometric overlap. To exploit this geometric relation, we develop a new learning framework, called the intersection-guided Crossview Local- and Image-level Fusion Network (CLIF-Net). Our technique employs two distinct convolutional neural network branches to extract features from coronal and sagittal images with newly developed multi-level fusion blocks. Specifically, we leverage the spatial position of these images to locate the intersecting region. We then identify and enhance the semantic features from this region across multiple levels using cross-attention modules, facilitating the acquisition of mutually beneficial and more representative features from both views. The final enhanced features from the two views are then integrated and projected through the image-level fusion layer, outputting pSBI and non-pSBI class probabilities. We contend that our method of exploiting multi-view cUS images enables a first of its kind, robust 3D representation tailored for pSBI detection. When evaluated on a dataset of 302 cUS scans from Mbale Regional Referral Hospital in Uganda, CLIF-Net demonstrates substantially enhanced performance, surpassing the prevailing state-of-the-art infection detection techniques.

Last updated on 05/16/2025
PubMed