Publications

2020

Basu, Himanish, and Thomas L. Schwarz. 2020. “QuoVadoPro, an Autonomous Tool for Measuring Intracellular Dynamics Using Temporal Variance”. Current Protocols in Cell Biology 87 (1): e108. https://doi.org/https://doi.org/10.1002/cpcb.108.
Abstract Trafficking of intracellular cargo is essential to cellular function and can be defective in pathological states including cancer and neurodegeneration. Tools to quantify intracellular traffic are thus necessary for understanding this fundamental cellular process, studying disease mechanisms, and testing the effects of therapeutic pharmaceuticals. In this article we introduce an algorithm called QuoVadoPro that autonomously quantifies the movement of fluorescently tagged intracellular cargo. QuoVadoPro infers the extent of intracellular motility based on the variance of pixel illumination in a series of time-lapse images. The algorithm is an unconventional approach to the automatic measurement of intracellular traffic and is suitable for quantifying movements of intracellular cargo under diverse experimental paradigms. QuoVadoPro is particularly useful to measure intracellular cargo movement in non-neuronal cells, where cargo trafficking occurs as short movements in mixed directions. The algorithm can be applied to images with low temporal or spatial resolutions and to intracellular cargo with varying shapes or sizes, like mitochondria or endoplasmic reticulum: situations in which conventional methods such as kymography and particle tracking cannot be applied. In this article we present a stepwise protocol for using the QuoVadoPro software, illustrate its methodology with common examples, discuss critical parameters for reliable data analysis, and demonstrate its use with a previously published example. © 2020 Wiley Periodicals LLC. Basic Protocol: QuoVadoPro, an autonomous tool for measuring intracellular dynamics using temporal variance
See also: Journal article

2019

Zhao, Guoli, Asli Oztan, Yingzhi Ye, and Thomas L. Schwarz. 2019. “Kinetochore Proteins Have a Post-Mitotic Function in Neurodevelopment”. Developmental Cell 48 (6): 873-82. https://doi.org/https://doi.org/10.1016/j.devcel.2019.02.003.
Summary The kinetochore is a complex of proteins, broadly conserved from yeast to man, that resides at the centromere and is essential for chromosome segregation in dividing cells. There are no known functions of the core complex outside of the centromere. We now show that the proteins of the kinetochore have an essential post-mitotic function in neurodevelopment. At the embryonic neuromuscular junction of Drosophila melanogaster, mutation or knockdown of many kinetochore components cause neurites to overgrow and prevent formation of normal synaptic boutons. Kinetochore proteins were detected in synapses and axons in Drosophila. In post-mitotic cultured hippocampal neurons, knockdown of mis12 increased the filopodia-like protrusions in this region. We conclude that the proteins of the kinetochore are repurposed to sculpt developing synapses and dendrites and thereby contribute to the correct development of neuronal circuits in both invertebrates and mammals.
See also: Journal article
Shlevkov, Evgeny, Himanish Basu, Mark-Anthony Bray, Zheng Sun, Wei Wei, Kaan Apaydin, Kyle Karhohs, et al. 2019. “A High-Content Screen Identifies TPP1 and Aurora B As Regulators of Axonal Mitochondrial Transport”. Cell Reports 28 (12): 3224-37. https://doi.org/https://doi.org/10.1016/j.celrep.2019.08.035.
Summary Dysregulated axonal trafficking of mitochondria is linked to neurodegenerative disorders. We report a high-content screen for small-molecule regulators of the axonal transport of mitochondria. Six compounds enhanced mitochondrial transport in the sub-micromolar range, acting via three cellular targets: F-actin, Tripeptidyl peptidase 1 (TPP1), or Aurora Kinase B (AurKB). Pharmacological inhibition or small hairpin RNA (shRNA) knockdown of each target promotes mitochondrial axonal transport in rat hippocampal neurons and induced pluripotent stem cell (iPSC)-derived human cortical neurons and enhances mitochondrial transport in iPSC-derived motor neurons from an amyotrophic lateral sclerosis (ALS) patient bearing one copy of SOD1A4V mutation. Our work identifies druggable regulators of axonal transport of mitochondria, provides broadly applicable methods for similar image-based screens, and suggests that restoration of proper axonal trafficking of mitochondria can be achieved in human ALS neurons.
See also: Journal article

2017

Su, Cathy, and Thomas L. Schwarz. 2017. “O-GlcNAc Transferase Is Essential for Sensory Neuron Survival and Maintenance”. Journal of Neuroscience 37 (8): 2125-36. https://doi.org/10.1523/JNEUROSCI.3384-16.2017.
O-GlcNAc transferase (OGT) regulates a wide range of cellular processes through the addition of the O-GlcNAc sugar moiety to thousands of protein substrates. Because nutrient availability affects the activity of OGT, its role has been broadly studied in metabolic tissues. OGT is enriched in the nervous system, but little is known about its importance in basic neuronal processes in vivo. Here, we show that OGT is essential for sensory neuron survival and maintenance in mice. Sensory neuron-specific knock-out of OGT results in behavioral hyposensitivity to thermal and mechanical stimuli accompanied by decreased epidermal innervation and cell-body loss in the dorsal root ganglia. These effects are observed early in postnatal development and progress as animals age. Cultured sensory neurons lacking OGT also exhibit decreased axonal outgrowth. The effects on neuronal health in vivo are not solely due to disruption of developmental processes, because inducing OGT knock-out in the sensory neurons of adult mice results in a similar decrease in nerve fiber endings and cell bodies. Significant nerve-ending loss occurs before a decrease in cell bodies; this phenotype is indicative of axonal dieback that progresses to neuronal death. Our findings demonstrate that OGT is important in regulating axonal maintenance in the periphery and the overall health and survival of sensory neurons.SIGNIFICANCE STATEMENT We show the importance of O-GlcNAc transferase (OGT) for sensory neuron health and survival in vivo. This study is the first to find that loss of OGT results in neuronal cell death. Moreover, it suggests that aberrant O-GlcNAc signaling can contribute to the development of neuropathy. The sensory neurons lie outside of the blood–brain barrier and therefore, compared to central neurons, may have a greater need for mechanisms of metabolic sensing and compensation. Peripheral sensory neurons in particular are subject to degeneration in diabetes. Our findings provide a foundation for understanding the role of OGT under normal physiological conditions in the peripheral nervous system. This knowledge will be important for gaining greater insight into such disease states as diabetic neuropathy.
See also: Journal article
Cartoni, Romain, Gulcin Pekkurnaz, Chen Wang, Thomas L. Schwarz, and Zhigang He. 2017. “A High Mitochondrial Transport Rate Characterizes CNS Neurons With High Axonal Regeneration Capacity”. PLOS ONE 12 (9): 1-12. https://doi.org/10.1371/journal.pone.0184672.
Improving axonal transport in the injured and diseased central nervous system has been proposed as a promising strategy to improve neuronal repair. However, the contribution of each cargo to the repair mechanism is unknown. DRG neurons globally increase axonal transport during regeneration. Because the transport of specific cargos after axonal insult has not been examined systematically in a model of enhanced regenerative capacity, it is unknown whether the transport of all cargos would be modulated equally in injured central nervous system neurons. Here, using a microfluidic culture system we compared neurons co-deleted for PTEN and SOCS3, an established model of high axonal regeneration capacity, to control neurons. We measured the axonal transport of three cargos (mitochondria, synaptic vesicles and late endosomes) in regenerating axons and found that the transport of mitochondria, but not the other cargos, was increased in PTEN/SOCS3 co-deleted axons relative to controls. The results reported here suggest a pivotal role for this organelle during axonal regeneration.
See also: Journal article
Misgeld, Thomas, and Thomas L. Schwarz. 2017. “Mitostasis in Neurons: Maintaining Mitochondria in an Extended Cellular Architecture”. Neuron 96 (3): 651-66. https://doi.org/https://doi.org/10.1016/j.neuron.2017.09.055.
Neurons have more extended and complex shapes than other cells and consequently face a greater challenge in distributing and maintaining mitochondria throughout their arbors. Neurons can last a lifetime, but proteins turn over rapidly. Mitochondria, therefore, need constant rejuvenation no matter how far they are from the soma. Axonal transport of mitochondria and mitochondrial fission and fusion contribute to this rejuvenation, but local protein synthesis is also likely. Maintenance of a healthy mitochondrial population also requires the clearance of damaged proteins and organelles. This involves degradation of individual proteins, sequestration in mitochondria-derived vesicles, organelle degradation by mitophagy and macroautophagy, and in some cases transfer to glial cells. Both long-range transport and local processing are thus at work in achieving neuronal mitostasis—the maintenance of an appropriately distributed pool of healthy mitochondria for the duration of a neuron’s life. Accordingly, defects in the processes that support mitostasis are significant contributors to neurodegenerative disorders.
Gornstein, Erica L., and Thomas L. Schwarz. 2017. “Neurotoxic Mechanisms of Paclitaxel Are Local to the Distal Axon and Independent of Transport Defects”. Experimental Neurology 288: 153-66. https://doi.org/https://doi.org/10.1016/j.expneurol.2016.11.015.
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect of paclitaxel and other chemotherapeutic agents. Paclitaxel binds and stabilizes microtubules, but the cellular mechanisms that underlie paclitaxel s neurotoxic effects are not well understood. We therefore used primary cultures of adult murine dorsal root ganglion neurons, the cell type affected in patients, to examine leading hypotheses to explain paclitaxel neurotoxicity. We address the role of microtubule hyperstabilization and its downstream effects. Paclitaxel administered at 10–50nM for 1–3days induced retraction bulbs at the tips of axons and arrested axon growth without triggering axon fragmentation or cell death. By correlating the toxic effects and microtubule stabilizing activity of structurally different microtubule stabilizing compounds, we confirmed that microtubule hyperstabilization, rather than an off-target effect, is the likely primary cause of paclitaxel neurotoxicity. We examined potential downstream consequences of microtubule hyperstabilization and found that changes in levels of tubulin posttranslational modifications, although present after paclitaxel exposure, are not implicated in the paclitaxel neurotoxicity we observed in the cultures. Additionally, defects in axonal transport were not implicated as an early, causative mechanism of paclitaxel s toxic effects on dorsal root ganglion neurons. By using microfluidic chambers to selectively treat different parts of the axon with paclitaxel, we found that the distal axon was primarily vulnerable to paclitaxel, indicating that paclitaxel acts directly on the distal axon to induce degenerative effects. Together, our findings point to local effects of microtubule hyperstabilization on the distal-most portion of the axon as an early mediator of paclitaxel neurotoxicity. Because sensory neurons have a unique and ongoing requirement for distal growth in order to reinnervate the epidermis as it turns over, we propose that the ability of paclitaxel to arrest their growth accounts for the selective vulnerability of sensory neurons to paclitaxel neurotoxicity.
See also: Journal article

2016

Lee, GaYoung, and Thomas L Schwarz. (2025) 2016. “Filamin, a Synaptic Organizer in \textitDrosophila, Determines Glutamate Receptor Composition and Membrane Growth”. Edited by Eyal D Schejter. ELife 5: e19991. https://doi.org/10.7554/eLife.19991.
Filamin is a scaffolding protein that functions in many cells as an actin-crosslinker. FLN90, an isoform of the Drosophila ortholog Filamin/cheerio that lacks the actin-binding domain, is here shown to govern the growth of postsynaptic membrane folds and the composition of glutamate receptor clusters at the larval neuromuscular junction. Genetic and biochemical analyses revealed that FLN90 is present surrounding synaptic boutons. FLN90 is required in the muscle for localization of the kinase dPak and, downstream of dPak, for localization of the GTPase Ral and the exocyst complex to this region. Consequently, Filamin is needed for growth of the subsynaptic reticulum. In addition, in the absence of filamin, type-A glutamate receptor subunits are lacking at the postsynapse, while type-B subunits cluster correctly. Receptor composition is dependent on dPak, but independent of the Ral pathway. Thus two major aspects of synapse formation, morphological plasticity and subtype-specific receptor clustering, require postsynaptic Filamin.
See also: Journal article
Shlevkov, Evgeny, Tal Kramer, Jason Schapansky, Matthew J. LaVoie, and Thomas L. Schwarz. 2016. “Miro Phosphorylation Sites Regulate Parkin Recruitment and Mitochondrial Motility”. Proceedings of the National Academy of Sciences 113 (41): E6097-E6106. https://doi.org/10.1073/pnas.1612283113.
In mitophagy, damaged mitochondria stabilize PTEN-induced putative kinase 1 (PINK1) and recruit Parkin, an E3-ligase that ubiquitinates proteins on the outer membrane and targets mitochondria for degradation. The crucial roles of PINK1 phosphorylation of Parkin and ubiquitin in mitophagy are well-established. Other substrates of PINK1, however, have also been reported but the significance of those phosphorylations is less clear. We now show that Miro phosphorylations can regulate Parkin recruitment to Miro and trigger Miro degradation. The consequence of this branch of the PINK1/Parkin pathway is the disruption of mitochondrial motility, an event that may spatially restrict the deleterious effects of mitochondrial damage prior to the mitophagic removal of the organelle. The PTEN-induced putative kinase 1 (PINK1)/Parkin pathway can tag damaged mitochondria and trigger their degradation by mitophagy. Before the onset of mitophagy, the pathway blocks mitochondrial motility by causing Miro degradation. PINK1 activates Parkin by phosphorylating both Parkin and ubiquitin. PINK1, however, has other mitochondrial substrates, including Miro (also called RhoT1 and -2), although the significance of those substrates is less clear. We show that mimicking PINK1 phosphorylation of Miro on S156 promoted the interaction of Parkin with Miro, stimulated Miro ubiquitination and degradation, recruited Parkin to the mitochondria, and via Parkin arrested axonal transport of mitochondria. Although Miro S156E promoted Parkin recruitment it was insufficient to trigger mitophagy in the absence of broader PINK1 action. In contrast, mimicking phosphorylation of Miro on T298/T299 inhibited PINK1-induced Miro ubiquitination, Parkin recruitment, and Parkin-dependent mitochondrial arrest. The effects of the T298E/T299E phosphomimetic were dominant over S156E substitution. We propose that the status of Miro phosphorylation influences the decision to undergo Parkin-dependent mitochondrial arrest, which, in the context of PINK1 action on other substrates, can restrict mitochondrial dynamics before mitophagy.
See also: Journal article